

PLANOS DE SEGURANÇA DA ÁGUA NO BRASIL

EXPERIÊNCIAS, APRENDIZADOS E REFLEXÕES

ANGELA DI BERNARDO DANTAS

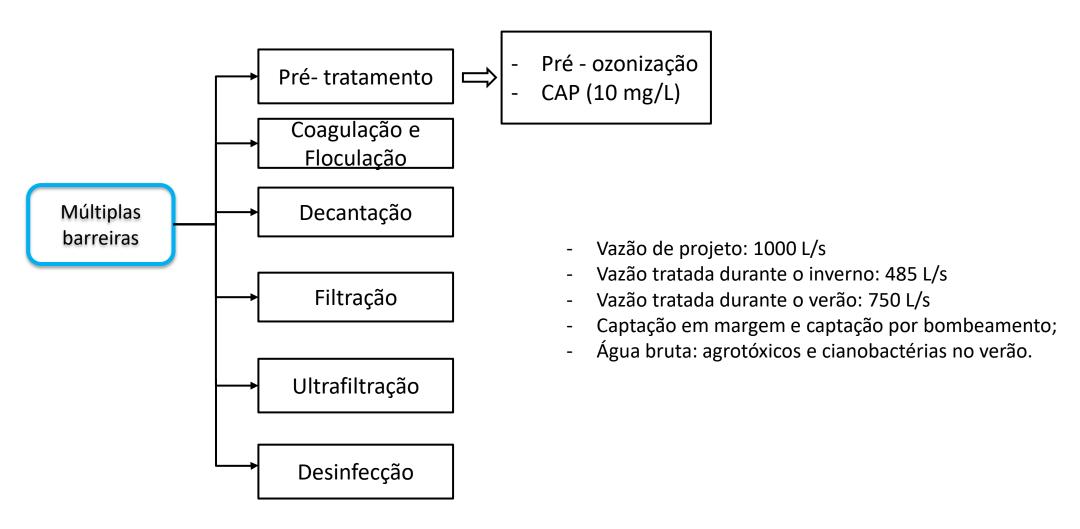
28/11/2023

Pilares da segurança da água

Planejamento

Preservação do manancial

Múltiplas barreiras, hidráulica adequada (ETAs operando sem sobrecarga)


Procedimentos operacionais adequados e equipamentos confiáveis

Equipe qualificada e treinada

ETA ANGERS

ETA ANGERS

Meio filtrante de areia, carreiras de filtração de 15 a 20 h Filtralite implantado há 2 anos, carreiras de filtração de 50 a 80 h Lavagem com ar seguida da lavagem com água (40 m/h e expansão de 15%)

FILTRAÇÃO

3 linhas - 6 filtros cada linha Filtração com taxa constante e nível constante

Taxa de filtração (inverno): 167 m³/m²/dia (42000 m³/dia em uma linha 6 filtros)

Taxa de filtração (verão): 258 m³/m²/dia

(65000 m³/dia em duas linhas 6 filtros – 12 no total)

Taxa de filtração (projeto): 120 m³/m²/dia

(90000 m³/dia em três linhas 6 filtros – 18 no total)

ETA ANGERS

Principais motivações SWAN AMI TURBIWELL Aumento da eficiência da ultrafiltração Redução de perdas Lavagem dos filtros e lavagem da UF

FILTRAÇÃO E ULTRAFILTRAÇÃO

- ☐ Formas de atuação da Hidrosan nos PSAs:
 - Elaboração do PSA;
 - Elaboração do PSA em conjunto com PDA;
 - Apoio técnico na elaboração do PSA;
 - Apoio técnico na implementação do PSA;
 - Treinamentos;
 - Elaboração do PSA em indústrias.

2018-2023: + 16 milhões de pessoas, + 35 PSAs


Experiência: mais de 300 estudos, consultorias e projetos de reforma e ampliação de ETAs

- Capacitação da equipe operacional;
- Otimização de processos e redução de custos operacionais;
- Melhorias na segurança da água no <u>curto prazo</u>;
- Priorização das ações e investimentos em função dos riscos;
- Operação para prevenção de riscos;
- Sistematização das informações e criação/atualização de banco de dados organizado.

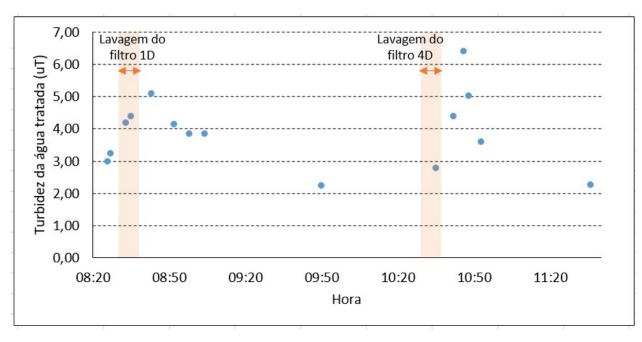
... em muitos casos, melhorias durante a elaboração do PSA!

✓ Consultoria externa

Avaliar a necessidade de contratação de consultores externos

Trabalho de colaboração técnica!

PRECISA TER O ENVOLVIMENTO DA EQUIPE
 QUE IRÁ IMPLEMENTAR O PSA

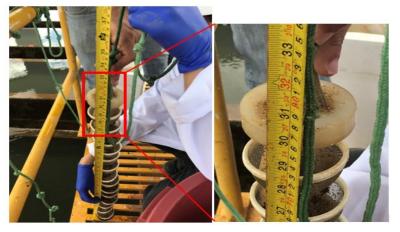


- ✓ Conhecimento da realidade local (porte do município, interferências políticas, equipe operacional, etc.) e das particularidades de cada cliente (Companhias de Saneamento, DAAEs, Prefeituras, Concessionárias);
 - √ Não pode virar "Copia e Cola"!
- ✓ Prazo para elaboração do PSA: mínimo de 6 meses para facilitar o envolvimento da equipe de implementação do PSA (cliente);
 - ✓ Diagnóstico aprofundado;
 - ✓ Amadurecimento dos conceitos de segurança da água;
 - ✓ Definição e capacitação da equipe de implementação do PSA;
- √ Visitas de campo (várias) imprescindíveis!!! Não se faz PSA sem visita técnica!
 - ✓ "Quebrar o gelo" Treinamento inicial para explicar que o PSA não é uma auditoria em busca de "culpados";
 - ✓ Entendimento do dia a dia da operação;
 - ✓ Entendimento das macro causas dos eventos perigosos;
 - ✓ Proposição de medidas de controle adequadas ao SAA.

EXEMPLO - FILTRAÇÃO

Picos de turbidez na **água filtrada geral**, superando **6,00 uT**, durante/após lavagem de cada filtro

EXEMPLO - FILTRAÇÃO


Evento perigoso: velocidade ascensional de água para lavagem elevada

Perigo: Microrganismos patogênicos

Justificativa:

- Afogamento das calhas de coleta durante a lavagem com água;
- Perda de material filtrante;
- Menores espessuras favorecem a ocorrência de transpasse (perda dos finos);
- Transpasse inicial de turbidez acima de 1 uT com duração acima de 2 h.

MACROCAUSA			A	SEVERIDADE	RIDADE EXPOSIÇÃO	RISCO		
AE	- 1	0	Р	SEVERIDADE	EXPUSIÇAU	VALOR	CLASSIF.	
	Χ	Χ	Χ	4	3	12	ALTO	

Medidas de controle:

- 1. Elaboração de POPs com adequação dos procedimentos de lavagem e de filtração, e treinamento dos operadores;
- 2. Automação das válvulas e equipamentos do sistema de lavagem.

Ponto crítico de controle (PCC):

Saída de cada filtro (água filtrada individual)

Parâmetro de monitoramento:

Turbidez

Limite operacional (LO): 0,5 uT

Limite crítico (LC): 1,0 uT

✓ Dados sobre o SAA

 Necessidade de histórico de dados do SAA e validações com a equipe operacional para entendimento da exposição ao perigo (mínimo 1 ano, adequado > 2 anos);

Pode ser feito bom PSA sem dados sobre o SAA????

MANANCIAL

- Bacia hidrográfica;
- Uso e ocupação do solo;
- Laudos de qualidade;
- Outorga;

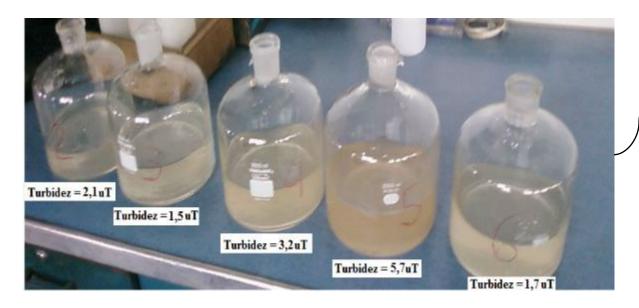
CAPTAÇÃO

- Projeto; as built;
- Inspeção das unidades;
- Acessórios de proteção na adutora;
- Inundação;
- Manutenção;
- Energia elétrica;
- Vandalismo/furtos

ETA

- Projeto, as built/cadastro técnico;
- Histórico de qualidade ao longo do tratamento;
- Vazão, dosagem de químicos;
- POPs;
- Inspeção das unidades;
- Ensaios de tratabilidade;
- Relato dos operadores;
- Vandalismo/furtos.

RESERVAÇÃO


- Projeto, as built/cadastro técnico;
- Inspeção das unidades;
- Histórico de limpeza;
- POPs limpeza;
- Vandalismo/furtos;
- Laudos de qualidade.

DISTRIBUIÇÃO

- Projeto, as built/cadastro técnico;
- Histórico de ocorrências de não conformidades e de reclamações;
- POPs descarga;
- Informações sobre a rede existente;
- Laudos de qualidade.

✓ Qualificação técnica da equipe operacional

Água com boa aparência?

Operação: entendimento de 5,0 uT como água de boa qualidade!

IV - padrão organoléptico: conjunto de valores permitidos para os parâmetros caracterizados por provocar estímulos sensoriais que afetam a aceitação para consumo humano, <u>mas que não</u> necessariamente implicam risco à saúde;

§ 2º Em toda a extensão do sistema de distribuição (reservatório e rede) ou pontos de consumo deverá atender ao VMP de 5,0 uT para turbidez.

✓ Desconhecimento e confusão de siglas: PSA x PSH x PDA x PMSB x PDA

PSA

PLANO DE SEGURANÇA DA ÁGUA

Objetivo: eliminar ou reduzir os riscos à saúde do consumidor associados à água de abastecimento durante as etapas de captação, tratamento, armazenamento e distribuição.

PSH

PLANO DE SEGURANÇA HÍDRICA

<u>Objetivo</u>: visa uma
infraestrutura planejada,
dimensionada, implantada
e uma gestão adequada
dos recursos hídricos a fim
de manter um equilíbrio
entre a oferta e a demanda
de água e a controlar
situações de risco, como a
vulnerabilidade a eventos
climáticos extremos. Foco
nos mananciais e em seus
usos.

PDA

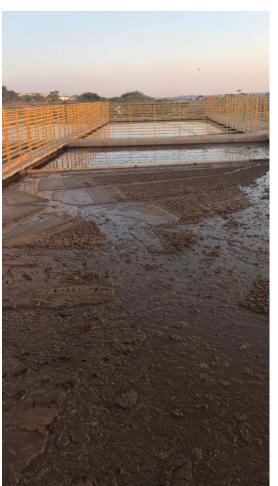
PLANO DIRETOR DE ÁGUAS

Objetivo: estabelece ações,
obras e investimentos
necessários para garantir
o abastecimento
universalizado de água à
população de
determinado município,
geralmente considerando
o horizonte de 20 anos
(renovação recomendada
a cada 4 anos).

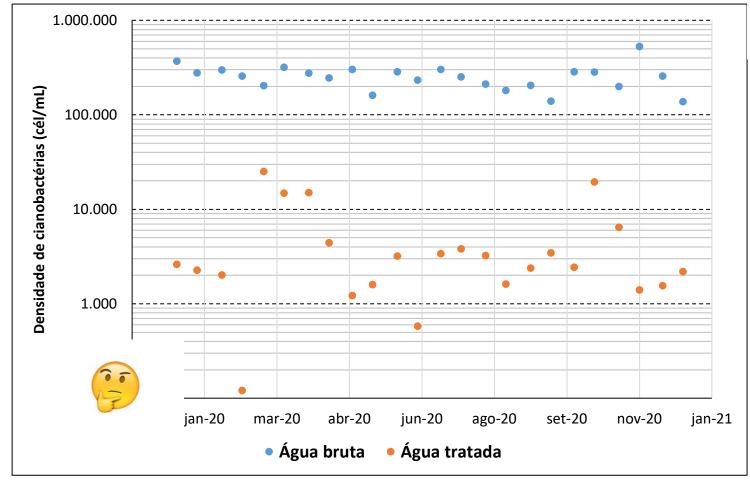
PMSB

PLANO MUNICIPAL DE SANEAMENTO BÁSICO

Objetivo: estabelece a programação das ações e dos investimentos necessários para garantir a adequada prestação dos serviços de saneamento básico (água, esgoto, drenagem e resíduos sólidos) de um determinado município.

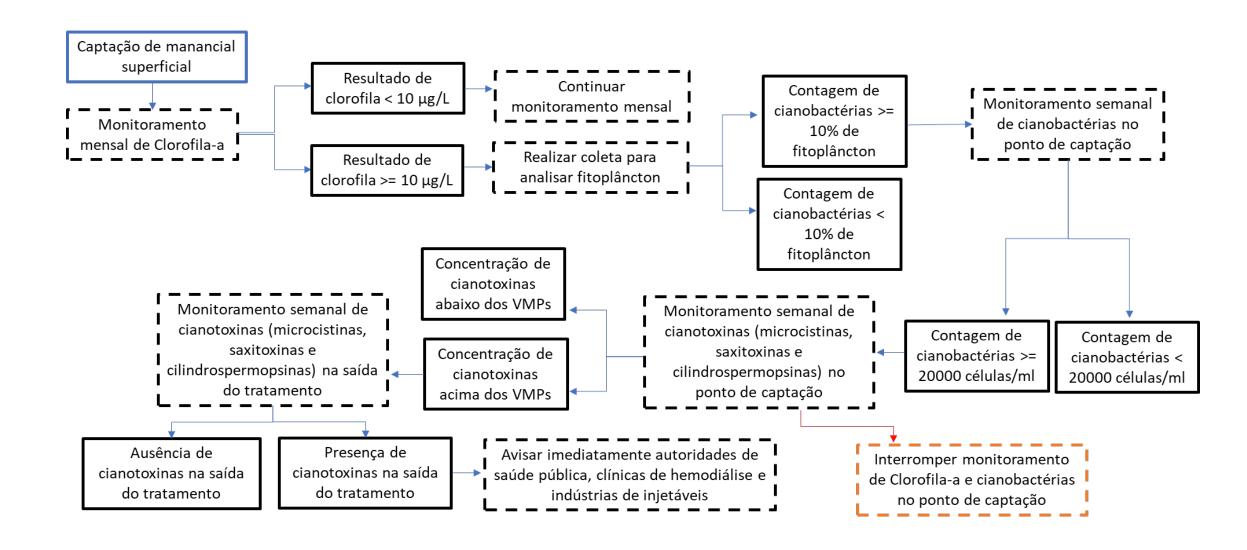

Possui uma abordagem mais simplificada para cada serviço e generalista do que planos mais específicos, como o PDA, PDE e o PMRS.


✓ Desafios: Elaboração x Implementação


ETA Ciclo Completo 900 L/s

- Pré-tratamento: pré-oxidação com cloro (dosagem insuficiente para cloração ao breakpoint);
- Amônia > 6,0 mg/L N-NH3;
- *E Coli* > 20.000/100 mL;
- OD < 2 mg/L.

Barreiras nas nossas ETAs? Qual densidade na água tratada é segura? Qual fonte nutrientes? Esgoto sanitário? Risco microbiológico?


Planktothrix agardhii

Cylindrospermopsis raciborskii

Amostra 1	Bruta	Coagulada	Filtro 1	Filtro 2	Filtro 3	Tratada	Água de lavagem do filtro 1
SST (mg/L)	7,30	18,50	<2,00	<2,00	<2,00	<2,00	205,00
COT (mg/L)	10,84	-	8,015	8,144	8,382	8,025	-
COD (mg/L)	8,191	-	7,903	7,564	7,823	7,500	-
Turbidez (uT)	9,33	10,1	0,72	0,84	0,99	0,55	34,7
Densidade de cianobactérias (cél/mL)	318.038,8	-	8.717,5	20.580,1	18.495,8	7.389,0	567.234,5
Tempo de operação do filtro (horas)	4,5 horas						

Amostra 2	Bruta	Coagulada	Filtro 14	Filtro 15	Filtro 16	Tratada	Água de lavagem do filtro 16
SST (mg/L)	12,70	11,90	<2,00	2,00	<2,00	<2,00	390,00
COT (mg/L)	10,790	-	8,008	8,287	8,078	8,218	-
COD (mg/L)	8,592	-	7,785	7,720	7,698	7,797	-
Turbidez (uT)	9,95	10,3	1,08	0,93	0,92	0,61	180,0
Densidade de cianobactérias (cél/mL)	168.882,3	-	13.964,5	13.298,5	12.259,7	8.853,6	941.831,2
Tempo de operação do filtro (horas)	5 horas						

- Confiabilidade analítica?
- Jarteste?
- Segurança da água?
- SISAGUA?

✓ Desafios: Elaboração x Implementação

ETA Ciclo Completo 400 L/s

ABANDONO!

ELABORAÇÃO X IMPLEMENTAÇÃO

PLANO DE AÇÕES **MEDIDAS DE CONTROLE**

GESTÃO DE RISCO

- Plano de alerta?! Execução das medidas de controle propostas e ???????
- Gestão de dados: como registrar, organizar e avaliar os dados gerados a partir das atividades do PSA?
- Revisões periódicas: com qual frequência? Equipe interna?
- Auditorias: quem fará a avaliação do PSA e da implementação do PSA?

Medidas de controle para riscos "altos" e "muito altos" → priorização das medidas de controle mais urgentes.

CRITÉRIOS DE PRIORIZAÇÃO DAS MEDIDAS DE CONTROLE - Exemplo

			Nota atribuída				
	Critérios	1	2	3	4		
Aspectos de segurança da	Prioridade das medidas de controle propostas no PSA	Medida de controle com prioridade máxima na matriz - "1"	Medida de controle com prioridade moderada na matriz - "2"	Medida de controle com prioridade baixa na matriz - "3"	-		
água	Classificação do risco associado à medida de controle	Risco Muito Alto	Risco Alto	-	-		
Aspectos finai	nceiros (Capex e Opex)*	Não requer invenstimento financeiro	Requer baixo investimento (até 1 milhão de reais)	Requer investimentos consideráveis (entre 1 e 5 milhões de reais)	Requer alto investimento (mais do que 5 milhões de reais)		
	Prazo	Até 1 ano e meio	Até 3 anos	Até 4 anos	-		

Classificação da viabilidade da medida de controle

Resultado numérico	Viabilidade global das medidas de controle				
Inferior a 6	A – Viabilidade alta				
Entre 7 e 9	B – Viabilidade média				
Superior a 10	C – Viabilidade baixa				

^{*}Estimado

BOAS PRÁTICAS OPERACIONAIS - MÍNIMO DO MÍNIMO

Foco inicial: melhoria das ETAs existentes

- Elaboração de procedimentos operacionais adequados e capacitação contínua dos operadores;
- Equipamentos e metodologias analíticas confiáveis na ETA para a tomada de decisão (prevenção do risco); mínimo turbidez, cor aparente, pH, cloro livre e jarteste;
- Medir vazão de forma confiável (rotina da ETA);
- Não operar com sobrecarga;
- Coagular adequadamente; NÃO EXISTE filtração rápida sem coagulação !
- Adequação e melhoria das unidades de filtração, com garantia de produção de água filtrada < 0,5 uT (individualmente);
- Garantir desinfecção com cloro livre e manter residual de cloro livre na rede de distribuição;
- Não recircular resíduos de ETAs sem tratamento (água de lavagem dos filtros é resíduo de ETA!);
- Manutenção preventiva de materiais e equipamentos;
- Complementações do tratamento convencional com tecnologias viáveis à realidade local (dióxido de cloro, filtralite, CAP, etc.);
- Não permitir a presença de animais na ETA.

SONHO ...

Melhorar a segurança da água no Brasil:

- Capacitação da operação;
- Adequação de POPs;
- Sensibilização de gestores/diretores para as condições mínimas necessárias de infraestrutura nas ETAs (investimentos);

OBRIGADA!

Av. São Carlos, 2205, sl.106

CEP: 13560-900 São Carlos SP tel. 16 3371 3466

angela@hidrosanengenharia.com.br